Flood Sung Avatar

Flood Sung
AI Researcher & RL Specialist

Member of Technical Staff at Moonshot AI, leading reinforcement learning research towards AGI. Pioneer in few-shot learning, meta-learning, and the innovative Long Chain-of-Thought reasoning.

AGI Research Reinforcement Learning Few-Shot Learning Meta-Learning Large Language Models
Flood Sung 头像

Flood Sung
AI研究员 & 强化学习专家

现任月之暗面技术专家, 主导强化学习研究,致力于AGI发展。在少样本学习、元学习以及创新的长思维链推理领域具有开创性贡献。

AGI研究 强化学习 少样本学习 元学习 大语言模型
6,000+
Citations
引用次数
45.4K
GitHub Stars
GitHub星标
AGI
Research Focus
研究重点
77,000+
Zhihu Followers
知乎粉丝

About Flood Sung

Flood Sung is a distinguished AI researcher and engineer specializing in deep learning, reinforcement learning, meta-learning, and few-shot learning. Currently serving as a Member of Technical Staff and RL Lead at Moonshot AI, he is at the forefront of developing Artificial General Intelligence (AGI).

With over 6,000 citations on Google Scholar, Flood has published numerous high-impact papers at top-tier conferences including CVPR, NeurIPS, and ICLR. His groundbreaking work on "Learning to Compare: Relation Network for Few-Shot Learning" has achieved over 5,575 citations, establishing him as a leading authority in the field.

Beyond research, Flood is a passionate open-source contributor, maintaining the widely acclaimed "Deep-Learning-Papers-Reading-Roadmap" with over 39.1k GitHub stars. He actively shares his insights through blog posts, academic conferences, and technical talks, earning recognition as an "AGI, Metaverse, and Robotics Evangelist."

"AGI is within reach, and the future lies in successfully applying reinforcement learning to increasingly complex scenarios—from AI simulating driving and writing articles to developing apps and publishing scientific papers."

关于Flood Sung

Flood Sung 是一位在人工智能领域,特别是深度学习、强化学习、元学习和少样本学习方向有深入研究和显著成就的学者和工程师。他目前担任Moonshot AI(月之暗面)的技术专家和RL Lead,致力于推动通用人工智能(AGI)的发展。

根据Google Scholar的数据,Flood Sung的学术成果显著,其论文总引用量已超过6,000次。他在CVPR、NeurIPS、ICLR等顶级学术会议发表了多篇高影响力论文,其中"Learning to Compare: Relation Network for Few-Shot Learning"获得了高达5,575次的引用。

作为开源社区的积极贡献者,Flood Sung维护着广受欢迎的"Deep-Learning-Papers-Reading-Roadmap"项目,获得了超过39.1k的GitHub星标。他通过撰写博客文章、参与学术会议和技术分享,积极传播知识和见解,被同行和媒体描述为"AGI、元宇宙及机器人革命布道师"。

"AGI近在眼前,未来的方向是将强化学习成功应用于更复杂的场景,例如让AI模拟驾驶、创作文章、开发APP、发表科研论文等。"

Research Focus

Few-Shot Learning

Pioneering work on relation networks for learning from limited data, with applications in computer vision and pattern recognition.

Reinforcement Learning

Advancing RL algorithms for sample-efficient learning, meta-RL, and their integration with large language models.

AGI Development

Leading research on Long Chain-of-Thought reasoning and building foundation models for artificial general intelligence.

研究方向

少样本学习

在关系网络方面的开创性工作,用于从有限数据中学习, 在计算机视觉和模式识别领域有广泛应用。

强化学习

推进样本高效学习的RL算法, 元强化学习,以及它们与大语言模型的集成。

AGI发展

领导长思维链推理研究, 为人工通用智能构建基础模型。

Representative Publications

Learning to Compare: Relation Network for Few-Shot Learning

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, T. M. Hospedales

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

5,575 Citations Code

Contribution: This landmark paper introduces Relation Networks for few-shot learning, significantly improving model generalization with limited training samples. The approach learns to compare samples through an embedding module and a relation module, achieving state-of-the-art results.

Kimi k1.5: Scaling reinforcement learning with llms

K. Team, A. Du, B. Gao, ..., F. Sung (Team collaboration)

arXiv preprint arXiv:2501.12599, 2025

253 Citations

Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

F. Sung, L. Zhang, T. Xiang, T. Hospedales, Y. Yang

arXiv preprint arXiv:1706.09529, 2017

170 Citations

Actor-Critic Sequence Training for Image Captioning

F. Sung, L. Zhang, T. Xiang, T. M. Hospedales, Y. Yang

IEEE International Conference on Computer Vision (ICCV), 2017

150 Citations

代表性论文

Learning to Compare: Relation Network for Few-Shot Learning

Flood Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, T. M. Hospedales

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

5,575 引用 代码

主要贡献: 这篇里程碑式的论文提出了少样本学习的关系网络方法,显著提升了模型在少量训练样本下的泛化能力。该方法通过学习嵌入模块和关系模块来比较样本,实现了最先进的性能。

Kimi k1.5: Scaling reinforcement learning with llms

K. Team, A. Du, B. Gao, ..., Flood Sung (团队合作)

arXiv preprint arXiv:2501.12599, 2025

253 引用

Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

Flood Sung, L. Zhang, T. Xiang, T. Hospedales, Y. Yang

arXiv preprint arXiv:1706.09529, 2017

170 引用

Actor-Critic Sequence Training for Image Captioning

Flood Sung, L. Zhang, T. Xiang, T. M. Hospedales, Y. Yang

IEEE International Conference on Computer Vision (ICCV), 2017

150 引用

TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning

Xiaoqing Zhang, Yuhan Liu, Xiuying Chen, Shuo Shang, Rui Yan, Flood Sung

ACL 2025 (Accepted Findings Papers)

Research Projects

Kimi k1.5 Multimodal Reasoning

Moonshot AI, 2025

Leading the development of Kimi k1.5 multimodal reasoning model, focusing on Long Chain-of-Thought (Long-CoT) technology to achieve state-of-the-art performance in complex reasoning tasks.

Long-CoT Multimodal Reasoning RL
Learn More

Deep Learning Papers Roadmap

Open Source, 2018-Present

Curated collection of deep learning papers with reading roadmap, helping researchers systematically master the field. 39.1k+ GitHub stars and widespread adoption in academia.

Education Roadmap Community
View Project

Long Chain-of-Thought Research

AGI Research, 2024-2025

Pioneering research on Long Chain-of-Thought reasoning, significantly improving LLM performance in complex reasoning tasks through extended reasoning chains and reinforcement learning optimization.

Long-CoT Reasoning AGI RL
Read Analysis

Relation Network Implementation

Open Source, 2018-Present

Official implementation of the CVPR 2018 paper "Learning to Compare: Relation Network for Few-Shot Learning," providing reproducible code and benchmarks for the research community.

Few-Shot Learning CVPR PyTorch
View Code

研究项目

Kimi k1.5 多模态思考模型

月之暗面, 2025

主导Kimi k1.5多模态思考模型的研发,专注于长思维链(Long-CoT)技术, 在复杂推理任务中实现最先进的性能。

长思维链 多模态 推理 强化学习
了解更多

深度学习论文阅读路线图

开源项目, 2018-至今

精选的深度学习论文集合与阅读路线图,帮助研究者系统性地掌握该领域。 39.1k+ GitHub星标,在学术界广泛采用。

教育 路线图 社区
查看项目

长思维链研究

AGI研究, 2024-2025

长思维链推理的开创性研究,通过扩展推理链和强化学习优化, 显著提升LLM在复杂推理任务中的性能。

长思维链 推理 AGI 强化学习
阅读分析

关系网络实现

开源项目, 2018-至今

CVPR 2018论文"Learning to Compare: Relation Network for Few-Shot Learning"的官方实现, 为研究社区提供可复现的代码和基准测试。

少样本学习 CVPR PyTorch
查看代码

Blog & Articles

Featured Moonshot AI Official • Feb 2025

The Thought Process Behind Kimi k1.5

A comprehensive analysis of OpenAI's o1 model breakthrough and Moonshot AI's journey in developing Long-CoT technology. This in-depth article reveals the technical challenges, strategic decisions, and future implications for AGI development.

Long-CoT AGI Technical Analysis
Long Chain-of-Thought reasoning visualization showing extended reasoning paths
Zhihu Column • Jan 2025

Behind Kimi k1.5: From Long-CoT Recognition to Model Training

Personal reflections on the development process of Kimi k1.5, from initial recognition of Long-CoT importance to practical training methodologies.

Kimi Personal
TechBeat • Mar 2024

Latest Advances in Deep Learning and Few-Shot Learning

Comprehensive overview of recent developments in deep learning and few-shot learning, exploring practical applications and future directions.

Tutorial Survey
Zhihu Live • 2024

AGI Discussions: The Future of Artificial General Intelligence

Live discussion series exploring the definition, development paths, and potential impacts of AGI on society and ethics.

AGI Live
ScienceNet • Feb 2025

The Future of AI and AGI

Insights into AI's future development and the challenges and opportunities facing AGI research and implementation.

Future AGI

博客与文章

精选 月之暗面官方 • 2025年2月

Kimi k1.5 背后的长长长长长思考

对OpenAI o1模型突破的全面分析,以及月之暗面在开发长思维链技术过程中的旅程。 这篇深度文章揭示了技术挑战、战略决策以及对AGI发展的未来影响。

长思维链 AGI 技术分析
长思维链推理可视化,展示扩展的推理路径
知乎专栏 • 2025年1月

Kimi k1.5背后:从长思维链认识到模型训练

关于Kimi k1.5研发过程的个人思考,从最初认识到长思维链的重要性到实际的训练方法。

Kimi 个人思考
TechBeat • 2024年3月

深度学习与少样本学习的最新进展

全面概述深度学习和少样本学习的最新发展,探索实际应用和未来方向。

教程 综述
知乎Live • 2024年

AGI杂谈:人工通用智能的未来

探讨AGI的定义、发展路径以及对社会和伦理的潜在影响的系列直播讨论。

AGI 直播
科学网 • 2025年2月

人工智能的未来与AGI

关于AI未来发展的见解,以及AGI研究和实施所面临的挑战与机遇。

未来 AGI

Open Source Projects

GitHub logo

floodsung

AI Researcher & Open Source Contributor

45.4K+
Total Stars

Deep-Learning-Papers-Reading-Roadmap

Curated collection of deep learning papers with systematic reading roadmap. Most starred repository with 39.1k+ stars.

⭐ 39.1k 🍴 7.4k
Featured

LearningToCompare_FSL

Official implementation of CVPR 2018 paper "Learning to Compare: Relation Network for Few-Shot Learning".

⭐ 1.1K 🍴 264
CVPR

Deep-Reinforcement-Learning

Collection of deep reinforcement learning algorithms implementation for educational and research purposes.

⭐ 987 🍴 321
RL

Meta-Learning-Algorithms

Implementation of various meta-learning algorithms for sample-efficient learning tasks.

⭐ 756 🍴 234
Meta
15+
Public Repositories
40K+
Total Stars
10K+
Total Forks
7
Languages

开源项目

GitHub logo

floodsung

AI研究员 & 开源贡献者

45.4K+
总星标数

Deep-Learning-Papers-Reading-Roadmap

精选的深度学习论文集合与系统性的阅读路线图。 最受欢迎的项目,拥有39.1k+星标。

⭐ 39.1k 🍴 7.4k
精选

LearningToCompare_FSL

CVPR 2018论文"Learning to Compare: Relation Network for Few-Shot Learning"的官方实现。

⭐ 1.1k 🍴 264
CVPR

Deep-Reinforcement-Learning

深度强化学习算法的集合实现,用于教育和研究目的。

⭐ 987 🍴 321
RL

Meta-Learning-Algorithms

多种元学习算法的实现,用于样本高效的学习任务。

⭐ 756 🍴 234
元学习
15+
公开仓库
40K+
总星标数
10K+
总复刻数
7
编程语言

Career Timeline

Moonshot AI (月之暗面)

Member of Technical Staff & RL Lead

2023 - Present

Leading reinforcement learning research team focused on AGI development. Deeply involved in Kimi series models R&D, particularly Kimi k1.5 multimodal reasoning model and Long-CoT technology research.

AGI Reinforcement Learning Long-CoT Beijing

Inspir AI

Research Manager

2022 - 2023

Focused on AGI research as Research Manager, leading projects in advanced AI algorithms and machine learning applications.

AGI Research Management Shanghai

ByteDance AI Lab

Research Scientist

2020 - 2022

Conducted research and development in deep learning and reinforcement learning, contributing to cutting-edge AI applications and algorithms.

Deep Learning Reinforcement Learning Beijing

Inspir AI

Algorithm Expert

Earlier

Served as Algorithm Expert, developing and optimizing AI algorithms for various applications and use cases.

Algorithms AI Development

Independent Researcher (Early Career)

Independent Research

Early

Worked as an independent researcher in artificial intelligence, focusing on deep learning and reinforcement learning. Self-driven research and open-source contributions laid the foundation for my AI career.

Independent

职业经历

Moonshot AI (月之暗面)

技术专家 & RL Lead

2023 - 至今

领导强化学习研究团队,专注于AGI发展。深度参与Kimi系列模型研发, 特别是Kimi k1.5多模态思考模型和长思维链技术研究。

AGI 强化学习 长思维链 北京

Inspir AI

研究经理

2022 - 2023

作为研究经理专注于AGI研究,领导先进AI算法和机器学习应用项目。

AGI研究 管理 上海

字节跳动 AI Lab

研究科学家

2020 - 2022

从事深度学习和强化学习的研究与开发,为前沿AI应用和算法做出贡献。

深度学习 强化学习 北京

Inspir AI

算法专家

早期

担任算法专家,为各种应用和用例开发和优化AI算法。

算法 AI开发

独立研究员(早期职业)

独立研究

早期

作为独立研究员,专注于人工智能领域,重点是深度学习和强化学习。自主研究和开源贡献为我的AI职业奠定了基础。

独立

Get In Touch

Contact Information

Academic Email
floodsung@moonshot.cn
Google Scholar
6,000+ citations
GitHub
floodsung
知乎
flood-sung

For research collaborations, speaking opportunities, or media inquiries, please reach out via email or LinkedIn.

Quick Message

联系方式

联系信息

学术邮箱
verified@moonshot.cn
Google Scholar
6,000+ 引用
GitHub
floodsung
知乎
flood-sung

如有研究合作、演讲机会或媒体采访需求,请通过邮箱或LinkedIn联系。

快速留言